skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilson, C. Blake"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electron paramagnetic resonance (EPR) is a powerful tool for research in chemistry, biology, physics and materials science, which can benefit significantly from moving to frequencies above 100 GHz. In pulsed EPR spectrometers driven by powerful sub-THz oscillators, such as the free electron laser (FEL)-powered EPR spectrometer at UCSB, control of the duration, power and relative phases of the pulses in a sequence must be performed at the frequency and power level of the oscillator. Here we report on the implementation of an all-quasioptical four-step phase cycling procedure carried out directly at the kW power level of the 240 GHz pulses used in the FEL-powered EPR spectrometer. Phase shifts are introduced by modifying the optical path length of a 240 GHz pulse with precision-machined dielectric plates in a procedure we call phase cycling with optomechanical phase shifters (POPS), while numerical receiver phase cycling is implemented in post-processing. The POPS scheme was successfully used to reduce experimental dead times, enabling pulsed EPR of fast-relaxing spin systems such as gadolinium complexes at temperatures above 190 K. Coherence transfer pathway selection with POPS was used to perform spin echo relaxation experiments to measure the phase memory time of P1 centers in diamond in the presence of a strong unwanted FID signal in the background. The large excitation bandwidth of FEL-EPR, together with phase cycling, enabled the quantitative measurement of instantaneous electron spectral diffusion, from which the P1 center concentration was estimated to within 10%. Finally, phase cycling enabled saturation-recovery measurements of T 1 in a trityl-water solution at room temperature – the first FEL-EPR measurement of electron T 1 . 
    more » « less
  2. Abstract We present time‐resolved Gd−Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter‐residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd‐sTPATCN spin labels, whose favorable qualities include a spin‐7/2 EPR‐active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C‐terminus and N‐terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light‐activated long‐range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins. 
    more » « less